Modul RDS-Decoder 4

Bedienungsanleitung

Sicherheitshinweise

- 1. Das Modul ist nur mit der in den technischen Daten angegeben Versorgungsspannung zu betreiben.
- 1. Der Anschluss des Moduls ist von qualifizierten Personen fachgerecht durchzuführen.
- 2. Zum Schutz der Modulelektronik sollte das Modul nur in einem Gehäuse betrieben werden.
- 3. Vermeiden Sie in Verbindung mit dem Modul Vibrationen, Stoßeinwirkungen, Temperaturen über +40°C, Nässe oder eine hohe Luftfeuchtigkeit.

Aufbau- und Anschlusshinweise

- 1. Beim **Einbau in ein Gehäuse** ist zu beachten, dass je nach Höhe der verwendeten Versorgungsspannung Wärme am Spannungsregler entsteht, die bei 45°C und mehr abgeführt werden sollte. In diesem Fall sind geeignete Lüftungsschlitze vorzusehen, die in ihrer Größe den Gehäuseabmessungen anzupassen sind, um einen möglichst guten "Abfluss" der Wärme zu gewährleisten. Eine Überhitzung ist unbedingt zu vermeiden.
- 2. Die **Schutzfolie** des LCD-Displays sollte möglichst erst bei Einbauende entfernt werden, um Beschädigungen der empfindlichen Displayoberfläche zu vermeiden.
- 3. Vor Inbetriebnahme benötigt das Modul eine externe Stromversorgung mit einer geringen Welligkeit von 6V bis 9V DC und stabilen 600mA (bei einem blau-weißen Display sind 400mA ausreichend). Schaltnetzteile mit geringer Welligkeit und geringer Störausstrahlung empfehle ich in der Regel nicht, da den meisten Anwendern eine Klassifizierung dieser Netzteile nicht möglich ist. Kleine Schaltnetzteile werden aufgrund der geringen Kosten, Abmessungen und des geringen Gewichtes aber dennoch gern verwendet. Bei Problemen mit der Decodierung der RDS-Daten sollte das Netzteil als Fehlerquelle mit in Betracht gezogen und testweise ausgetauscht werden. Die Anschlussbelegung ist dem Anschlussplan (siehe Anhang) zu entnehmen. Das Modul besitzt einen Verpolungsschutz, jedoch keinen Überspannungsschutz! Spannungen über 9V DC zerstören nicht das Modul, tragen ohne vorbeugende Schutzmaßnahmen (Anpassung von Vorwiderstand R1 und R2) jedoch zu einer starken Erwärmung des Moduls bei!
- 4. Dem Modul liegen die Steckverbinder mit **Anschlusskabel für X3 und X4**, sowie zwei verschiedenfarbige **LED** bei. Nicht benötigte Anschlusskabel von X3 sollten entfernt oder kurz abgeschnitten werden, um Kurzschlüsse zu vermeiden. Der längere Anschlusspin gibt bei der LED die Anode an. Die Kathode hat auf dem Bestückungsplan eine breite schwarze Markierung. Die beigefügten 3mm Leuchtdioden wurden nicht eingelötet, da sie entsprechend der Länge des Eigenbaugehäuses frontseitig angepasst werden müssen.
- 5. Es ist bei der Verdrahtung des **Steckverbinders X3** zu beachten, dass für die Nutzung des Minutenimpulses und der PC-Anschlüsse nur ein **Massekabel** (GND-Pin 3) zur Verfügung steht. Der vorbereitete Alarmausgang (wird nicht mehr implementiert) besitzt einen weiteren GND-Pin (Pin 10), der hierfür verwendet werden kann.
- 6. Ein entsprechender **AF-Taster** kann optional in die Platine unter den beiden LED V3 und V4 einglötet werden. Dieser Taster ist nicht als Zubehörteil erhältlich und muß über die gängigen Elektronikanbieter Reichelt, Conrad etc. beschafft werden.
- 7. Bei einer Bestellung des RDS-Decoders mit einem **Display mit 2x16 Zeichen** erfolgt die Lieferung von bestückter Decoderplatine und LCD-Display als Einzelkomponenten ohne Verschraubungen. Das Display wird mit bestückter Stiftleiste geliefert.
- 8. Bei einer Bestellung einer fertig bestückten Decoderplatine ohne Display ist bei der **Beschaffung eines Displays** auf einen "HD44780-kompatiblen" Controller zu achten. Die angeblich kompatiblen Display-Controller "KS0066U", "ST70660U", "ST7036U" einiger Displayhersteller haben u.U. einige Abweichungen in der Darstellung. Daher sollte man diese vor dem Einbau des kompletten Decoders in ein Gehäuse unbedingt testen.
- 9. Sollte die bestellte Software-Version ("A-E") letztlich nicht den Wünschen entsprechen, kann der ATMEGA8-Controller vorsichtig senkrecht aus dem Stecksockel gezogen und zum Umprogrammieren eingesandt werden. Außer Versandkosten (inclusive frankierten Rückumschlag) fallen keine Kosten für die Programmierung an. Zu einem RDS-Decoder kann ein zweiter ATMEGA8-Controller mit einer zweiten Software-Version mit- oder nachbestellt werden (siehe unter der Rubrik RDS-Decoder 4 und Shop auf meiner Internetseite).
- 10. Der Betrieb des RDS-Decoders am PC ist auf meiner Internetseite beschrieben.
- 11. Die vier Befestigungsschrauben (M2,5 x 20) des Moduls sind bewußt etwas länger gewählt worden, damit das Modul in einem Eigenbaugehäuse entsprechend befestigt werden kann. Es gibt aufgrund der maßlichen Anpassung an das Display keine andere Möglichkeit der Befestigung.

Der hierzu notwendige technische Eingriff in das Empfangsgerät ist durch eine fachlich qualifizierte Person durchzuführen. Für Schäden, die durch den unsachgemäßen Umbau entstehen, wird keine Haftung übernommen!

Hinweise zur Inbetriebnahme

Der RDS-Decoder ist als Modul betriebsbereit aufgebaut und zeigt nach dem Anschluss von Versorgungsspannung und RDS-Datenkabel schon nach wenigen Sekunden erste Datensätze aus den RDS-Datenblöcken an.

Voraussetzung für eine stabile Funktion ist ein UKW-Empfangsgerät in analoger Schaltungstechnik mit einem guten Antennensignal. Die digitalen RDS-Daten (gewonnen aus dem MPX-Signal) sind dem Tonsignal aufmoduliert. Diese müssen im Empfänger wieder getrennt werden. Idealer Weise sollte das RDS-Signal direkt am Ausgang des FM-Demodulators abgegriffen werden. In der Praxis ist bei so gut wie keinem Empfänger ein solcher Abgriff vorhanden. Daher versuchen Hobbyisten verfügbare Ausgänge für diesen Zweck zu nutzen. Der "LINE OUT" oder die Kopfhörerbuchse werden für den Anschluss des Decoders genutzt. Der Decoder funktioniert an diesen Anschlüssen eher schlecht als recht. Es mag durchaus Ausnahmen bei der unerschöpflichen Vielfalt bisher produzierter Empfangsgeräte geben. Dennoch findet eine Beeinflussung der RDS-Daten (gute Geräte besitzen sogar Filter zum Abblocken der RDS-Signale, um den Klang möglichst rein und unverfälscht genießen zu können) statt, die eine fehlerfreie Decodierung unmöglich machen. Der Abgriff am "LINE OUT" oder an der Kopfhörerbuchse bei lokal starken UKW-Stationen kann durchaus noch zu brauchbaren Ergebnissen führen, ist in der Regel iedoch mit Einschränkungen verbunden. Daher empfiehlt sich in jedem Fall der Eingriff am Empfangsgerät. Das RDS-Signal ist dann mittels eines abgeschirmten Kabels (z.B. 3mm Koax-Kabel) zwischen Demodulator und Stereodecoder bzw. direkt am Demodulatorausgang mit dem Innenleiter des Kabels über einen Kondensator von ca. 330-470pF abzugreifen. Die Abschirmung sollte an einem Massepunkt in der Nähe des Abgriffs gelötet werden. Das andere Ende des Kabels wird zur Empfängerrückwand geführt, um es an eine vorher eingebaute, isolierte Cinch-Buchse zu löten. Damit kann von außen ein handelsübliches, abgeschirmtes Cinch-Kabel angeschlossen und entsprechend dem RDS-Decodermodul zugeführt werden (siehe Anschlussplan unten oder unter Downloads auf der Seite http://haraldkliem.jimdo.com). Einige Beispiele des Abgriffes an verschiedenen Geräten sind ebenfalls auf dieser Internetseite zu finden.

Die Verbindung zwischen Tuner/Receiver und RDS-Decoder über das abgeschirmte Verbindungskabel (Cinch) ist in spannungslosem Zustand des RDS-Decoders herzustellen oder zu trennen. Wird der Decoder in eingeschaltetem Zustand mit dem Empfangsgerät verbunden, kann es in seltenen Fällen zu einer Fehlfunktion kommen, die den Decoder-Controller blockiert. In diesen Fällen ist das Gerät noch einmal kurz aus- und wieder einzuschalten (Reset-Funktion).

Der RDS-Decoder ist betriebsbereit, wenn RDS- und Versorgungskabel angeschlossen sind. Nach dem Einschalten erscheint nach einem kurzen Moment "Kein RDS". Werden RDS-Daten empfangen, erfolgt nach wenigen Sekunden die Anzeige der RDS-Inhalte auf dem Display. Ist die RDS-Verbindung unterbrochen oder werden keine RDS-Daten empfangen, wird dauerhaft "Kein RDS" angezeigt.

Darstellung der RDS-Daten auf dem Display

Displayanzeige am Beispiel der Software-Version "A"

Auf dem vierzeiligen Display werden die folgenden RDS-Programminhalte entsprechend der jeweiligen Software-Version "A-E" dargestellt:

- **1. Zeile** (Display 4x16 Zeichen und Display 2x16 Zeichen)
- Stationsname/Regionalkenner *PS* (die ersten 8 Zeichen)
- Uhrzeit CT (wird mit den RDS-Daten jede volle Minute aktualisiert)
- Kennzeichnung TA bei Aussendung von Verkehrsinfos (Wechsel von "-" auf "*")
- **2. Zeile** (Display 4x16 Zeichen und Display 2x16 Zeichen)
- Durchlaufender aktiver Radioinformationstext *RT* über die gesamte Zeile (auch beim Display mit 2x16 Zeichen, wenn kein Programmtyp ausgestrahlt wird, sonst links der Radiotext und

3. Zeile (Display 4x16 Zeichen)

- Programmtyp PTY über die gesamte Zeile mit 16 Zeichen
- wird durch die Rundfunkstation kein Programmtyp PTY übertragen, ist die Einblendung eines "Wunschtextes" wie z.B. "Radio von Carmen" über 16 Zeichen möglich (Version "B" der Programmierung – ansonsten Abbild wie Basisversion "A")
- Der Programmtyp wird während einer Verkehrsmeldung *TA* durch die Anzeige "Verkehrsinfo" (bei einem zweizeiligen Display "Verkehr" in der 2. Zeile) ersetzt

4. Zeile (Display 4x16 Zeichen)

- wechselnde Anzeige der verfügbaren Alternativfrequenzen AF in Zweiergruppen
- in der Version "A" (Grundversion) erfolgt die Anzeige des *PI*-Regionalcodes, ob es sich um einen Lokal-, Regionalsender oder um eine UKW-Station handelt, die im gesamten Bundesland oder national in allen Bundesländern zu empfangen ist
- auf Wunsch kann anstelle des *PI*-Regionalcodes der *PI*-Stationsidentifikationscode eines UKW-Rundfunksenders im Hex-Format (z.B. "D301") dargestellt werden (entspricht der "einfachen" DX-Version "C")
- in der "großen" DX-Version "D" entfällt die Alternativfrequenzanzeige *AF* gegenüber der Version "C"; es wird links der Zählerdatenspeicher der gesammelten Stationsidentifikationscodes im Durchlauf und rechts der stets aktuelle Stationsidentifikationscode im Hex-Format angezeigt (siehe Funktionsbeschreibung)

Die bisher verfügbaren Software-Versionen "A-D" wurden auf Kundenwunsch durch eine spezielle *RT*-Version "E" erweitert. Nach dem Einschalten des Gerätes oder nach einer Abstimmung auf einen anderen UKW-Sender wird nach Ablauf von ca. 20 Sekunden Standardanzeige über die gesamten 4 Zeilen des Displays - der Radiotext ist insgesamt 64 Zeichen lang - der komplette Radiotext *RT* auf einen Blick abgebildet (siehe Bild unter Abschnitt "Sonderversion E" weiter unten). Die Datenblöcke werden hierbei auf dem Display in unterschiedlicher Reihenfolge nach dem Decodieren angezeigt. Es vergehen mehrere Sekunden, bevor ein 64 Zeichen langer Text komplett dargestellt wird, da die Datenblöcke zuvor seriell empfangen, auf Fehler geprüft und erst dann dem Display zugeführt werden. Bei nicht ausreichender Signalstärke des Senders springt die Anzeige stets wieder in den Standardmodus, um nach ca. 20 Sekunden fehlerfreier Datenblöcke erneut über 4 Zeilen den Radiotext anzuzeigen.

Funktionsbeschreibung

Mit dem RDS-Decoder werden zusätzliche Informationen der einzelnen Rundfunkstationen sichtbar auf einem Display dargestellt, die handelsübliche Geräte oftmals in diesem Umfang vermissen lassen oder nur reduziert abbilden (z.B. den Stationsnamen *PS*). Aus diesem Grund ist der Decoder ein nützliches Zusatzgerät mit einer funktionellen Aufwertung für jeden UKW-Empfänger in analoger Schaltungstechnik.

Nach Inbetriebnahme des Decoders erscheint ohne die Herstellung der RDS-Verbindung zum Tuner/Receiver oder bei schwachem Antennensignal auf dem Display die Anzeige "Kein RDS". Wird das Modul über ein RDS-Kabel mit dem Tuner/Receiver verbunden und das Antennensignal ist ausreichend stark, dann werden innerhalb weniger Sekunden gruppenweise die ersten vom Sender übertragenen RDS-Daten auf dem Display sichtbar.

Die Uhrzeit in der 1. Zeile wird zu jeder vollen Minute aktualisiert. Daher kann es unter Umständen 59 Sekunden dauern bis die Uhrzeit auf dem Display erscheint (vorausgesetzt, das Uhrzeittelegramm wird in den RDS-Daten des Senders mit übertragen). Wird nun, nachdem die Uhrzeit einmal empfangen wurde, ein Sender eingestellt, der das Zeittelegramm nicht sendet, läuft die Uhr dennoch eigenständig, ohne Synchronisation, weiter. Dies geschieht auch bei der Nutzung der FM-Umschaltfunktion (Klemme X3, Pin 7 und 8), wenn von FM auf AM oder eine andere Quelle (Tape, Phone, Aux) umgeschaltet wird. Die Displayhintergrundbeleuchtung und angeschlossene Leuchtanzeigen werden dabei abgeschaltet. Dann sind nach einer Laufzeit von mehreren Stunden jedoch Ungenauigkeiten bei der Anzeige der Uhrzeit von einigen Sekunden pro Tag möglich.

Entscheidend für die fehlerfreie Funktion des RDS-Decoders ist ein gutes Antennensignal. Schlechte Empfangsverhältnisse führen unweigerlich zum Informationsverlust einzelner Datenblöcke in der Anzeige bzw. zur Darstellung "Kein RDS". In einigen europäischen Ländern wurde der Modulationshub nach der ARI-Abschaltung auf bis zu 4kHz angehoben (z.B. Frankreich, Niederlande), jedoch bisher nicht in Deutschland (1,2kHz). Daher sind Stationen aus Frankreich bereits bei geringerer Feldstärke immer noch vom RDS-Decoder darstellbar.

Bei einem Senderwechsel von einer empfangsstarken auf eine empfangsschwache Station läuft eine kurze Zeit der RDS-Text der empfangsstarken Station weiter, bevor "Kein RDS" angezeigt wird. Dies stellt keine Fehlfunktion dar, sondern entspricht dem Algorithmus des RDS-Decoders. Genau in diesen 10 Sekunden versucht die Software auch Fragmente an RDS-Daten zu sammeln, um Datenblöcke umfassend darstellen zu können. Ohne diese Funktion würden ständig im Wechsel "Kein RDS" und/oder RDS-Datenfragmente anzeigt werden, die auf den Betrachter

irritierend wirken. Diese Fähigkeit des Decoders trägt dazu bei, dass bei weniger guten Empfangsverhältnissen dennoch verwertbare Informationen auf dem Display erscheinen. Es kann einige Sekunden in Anspruch nehmen, bevor sämtliche Informationen im Display abgebildet werden. Danach können die RDS-Daten bis zu 10 Sekunden komplett ausfallen, ohne dass die Anzeige gelöscht wird. Der 64 Zeichen lange, bereits zwischengespeicherte Radiotext läuft in dieser Zeit ebenso weiter.

AF-Alternativfrequenzanzeige mittels einer zusätzlichen LED

Die angezeigten Zweiergruppen der Alternativfrequenzen in der 4. Zeile (dies können mehrere Frequenzlisten sein) werden den gesendeten Datenpaketen entnommen und in kurzen Zeitabständen fortlaufend angezeigt. Eine Systematik in der Darstellung gibt es nicht. Es kann sich um eine Vielzahl von alternativen Frequenzen handeln, die im Ausstrahlungsgebiet zu empfangen sind. Empfangsgeräte in Fahrzeugen sind in der Lage diese Frequenzlisten zu durchsuchen, die lokale Feldstärke und den PI-Code dieser Alternativfrequenzen zu prüfen, um letztlich auf eine Alternativfrequenz umzuschalten, wenn die Feldstärke der gegenwärtig eingestellten Stationsfrequenz zu schwach

Welche AF's (Alternativfrequenzen) werden nun im RDS-Decoder 4 in der 4. Zeile dargestellt? Die Software sucht zunächst die Liste mit den zahlreichsten AF's. Das erfordert etwas Zeit und in Zeile 4 läuft bis zur Ermittlung aller Daten ein Zähler rückwärts. Stoppt der Zähler, wartet die Software auf die nun folgende längste Liste, wählt sich die ersten 6 AF's aus. Zwei davon werden links in Zeile 4 dargestellt, 4 AF's stehen im Speicher. Nach 5 Sekunden werden zwei aus dem Speicher geladen und in Zeile 4 dargestellt. Im Speicher werden diese beiden gelöscht und mit "frischen" AF's aus dem RDS-Datenstrom aufgefüllt. Das geschieht im Hintergrund, für den Anwender unbemerkt. Das Programm stellt sicher, dass die 4 AF's im Speicher stets unterschiedlich sind. Es ist allerdings durchaus möglich, dass z.B. links in Zeile 4 nur eine AF mit z.B. "90,6 MHz" steht und beim nächsten Wechsel in Zeile 4 rechts auch eine 90,6 MHz. Die Erklärung hierfür: Der Rundfunksender übermittelt nur wenige AF's. Werden keine AF's oder nur eine AF angezeigt, existieren auch keine weiteren AF's.

Welchen Nutzen haben die AF's für den Anwender des RDS-Decoders? Wie oben bereits beschrieben erfolgt in den meisten PKW-Empfangsgeräten die Alternativfrequenzsuche unbemerkt mittels einer Software. Verlässt der Fahrer den Empfangsbereich einer Sendestation, sucht die geräteinterne Software die gleiche Station auf einer anderen Freguenz - der Alternativfreguenz. Genau diese Funktion ist jetzt manuell, mittels langsamer Abstimmsuche am Tuner/Receiver und durch die Unterstützung des RDS-Decoders möglich. Damit ist die AF-Funktion hilfreich. um von einem leicht verrauschten Sender auf einen gleichen, weniger verrauschten Sender zu wechseln.

Gestartet wird die AF-Suche, indem ein gewünschter RDS-Sender eingestellt wird, von dem eine AF ermittelt werden soll. Wird der AF-Taster 2 Sekunden lang betätigt, ist die AF-Suche "scharf" (aktiviert), die LED leuchtet. Wird die Sendersuche nicht gestartet, erlischt die LED nach ca. 5 Sekunden. Die AF-Suche kann nach 5 Sekunden erneut gestartet werden. Die AF-Suche bleibt bei laufender Abstimmung am Tuner/Receiver für ca. 2 Minuten aktiviert und wird automatisch nach dem Ende mit 3x Blinken deaktiviert. Wurde in dieser Zeit keine AF gefunden und dabei das gesamte UKW-Band abgesucht, ist am Standort keine AF vorhanden. Ist eine AF vorhanden, wird dies während des langsamen Abstimmens mit dem einfachen Erlöschen der AF-LED quittiert. Die AF-Suche kann jederzeit mit erneutem Betätigen des Tasters für 2 Sekunden während der aktivierten AF-Suche deaktiviert werden. Die AF-Suche sollte hierbei in nicht zu schnellen Abstimmschritten durchgeführt werden, da die Software einige Millisekunden benötigt, um die PI-Kennung des Senders zu lesen. Sind zwei gleiche Sender auf unterschiedlichen Frequenzen bekannt, kann die manuelle AF-Funktion entsprechend getestet werden.

PS-Stationskennung

Zur Identifikation der Rundfunkstation wird die Stationskennung dargestellt (in der 1. Zeile links beim RDS-Decoder 4). Wird von der Rundfunkstation keine Kennung ausgegeben oder werden keine RDS-Daten empfangen, erscheint an dieser Stelle "Kein RDS".

CT-Anzeige

Sie bezeichnet die in den RDS-Daten enthaltene Uhrzeit und wird in der 1. Zeile nach der PS-Stationskennung angezeigt. Die Uhrzeit wird erstmals angezeigt, sobald ein Minutenwechsel erfolgt. Dies können demzufolge maximal 59 Sekunden sein. Voraussetzung dafür ist das vom Sender abgestrahlte Zeittelegramm (nicht jede Rundfunkstation überträgt die Uhrzeit), sowie gültig decodierte RDS-Daten mit einem ausreichend starken Antennensignal.

PI-Anzeige (keine Anzeige bei Verwendung des Displays 2x16 Zeichen)

Sie ermöglicht z.B. die Zuordnung zu einzelnen Staaten (der RDS-Decoder 4 zeigt diese aus Platzgründen nicht an). Des Weiteren enthält der PI-Code Informationen zur Empfangsregion innerhalb eines Landes. Folgende Kennungen werden bei der entsprechenden Version des RDS-Decoders rechts in der 4. Zeile (die vier letzten Zeichen) wie folgt dargestellt:

Lok. - Lokalsender

Nat. - Aussendung im gesamten Staatsgebiet (national)

Land - Aussendung im jeweiligen Bundesland

- Aussendung regional, in einem Teil eines Bundeslandes Reg.

Der *PI*-Datenblock enthält außerdem noch einen vierstelligen Stationsidentifikationscode (z.B. "D301") als Hexadezimalcode, der bei den entsprechenden RDS-Decoderversionen rechts unten in der 4. Zeile (die vier letzten Zeichen rechts) angezeigt wird.

PTY- Programmtyp

Die Anzeige des *PTY* erfolgt in der 3. Zeile, beim Display 2x16 Zeichen in der 2. Zeile links in verkürzter Form. Es werden 31 Programmtypen sowie "Verkehrsinfo" (*PTY* "Testalarm" und "Alarm" mit Schaltfunktion – nicht mehr implementiert) angezeigt, wobei der Programmtyp "0" (keine Anzeige des Programmtyps) beim *RDS-Decoder 4* für einen Wunschtext (Version "B") genutzt werden kann. Ansonsten erfolgt im vierzeiligen Display die Anzeige "Kein Programmtyp". Das zweizeilige Display blendet in diesem Fall über die gesamte Zeile den Radiotext ein. Eine ausführliche Liste der RDS-Programmtypen des *RDS-Decoder 4* ist im Anhang zu finden.

QUAL-Anzeige des RDS-Signals über eine zusätzliche LED

Nicht zu unterschätzen ist die Funktion der RDS-Qualitätsanzeige mittels LED. Mit dieser LED-Anzeige kann man die Empfangsstation auf den optimalen RDS-Pegel einstellen. Dies gelingt, indem die Empfangsstation auf die niedrigste "Blinkfrequenz" (geringstes Flackern) mittels Abstimmknopf am Tuner/Receiver eingestellt wird. Ein optimaler RDS-Empfang bedeutet <u>kein</u> leuchten der QUAL-LED.

TA- Anzeige

Übermittelt eine Rundfunkstation Verkehrsmeldungen, erscheint in der 1. Zeile des Displays rechts neben der Uhrzeit während dieser Zeit ein "*" (*TA*-Flag). In den Decoderversionen mit Programmtyp *PTY* wird zudem der Programmtyp gewechselt und "Verkehrsinfo" (beim zweizeiligen Display "Verkehr") eingeblendet

DX-Version (Sonderversion Controller-Programmierung "D" für Funkamateure)

Der Programmidentifikationscode kann auf Wunsch bereits anstelle des Regionalcodes in der Version "C" angezeigt werden. Um den Decoder noch komfortabler speziell für UKW-DX nutzbar zu machen, wurde die Anzeige der vierten Zeile verändert. Wie auf dem Bild unten zu sehen, verbleibt nur der aktuelle PI-Code im Hex-Format rechts an gleicher Stelle (siehe Bild unten Position C).

Verzichtet wird bei der DX-Version auf die Alternativfrequenzanzeige *AF*. Dafür startet mit dem Einschalten des RDS-Decoders ein Zähler (siehe Bild oben Position B), der beim Abstimmen jede neue, noch nicht empfangene Rundfunkstation einmal zählt. Von 87,5MHz bis 108MHz kann damit auf einfache Weise die Anzahl der verschiedenen Stationen ermittelt werden. Die maximale Anzahl beträgt 99 *PI*-Codes. Mit dem Ausschalten des Decoders wird der Zählerdatenspeicher wieder gelöscht. Nach dem erneuten Einschalten beginnt der Zähler wieder von "0" zu zählen.

In der 4. Zeile links erfolgt die Darstellung aller bisher empfangen Stationen im *PI*-Code-Datenspeicher (siehe Bild oben Position A). Die "(7)" gibt hierbei die Nummer der Reihenfolge der empfangenen Stationen an. Sobald der zweite *PI*-Code empfangen wurde, werden alle bisher empfangenen *PI*-Codes mit der dazugehörigen Nummer im Abstand von 5 Sekunden angezeigt, wenn ab der 2. Station diese dauerhaft eingestellt bleibt. Die Ausgabe der Liste wird permanent wiederholt. Dies gestattet ein zügiges Notieren der einzelnen *PI*-Codes. Ist dies zu schnell, kann ein Stopp des Durchlaufs erreicht werden, indem einfach nur auf "Rauschen" abgestimmt wird (kein Empfang von RDS-Daten). Beim nächsten Hineindrehen/Abstimmen auf eine Station wird der Durchlauf fortgesetzt. Somit lassen sich auf einfache Weise die verschiedenen *PI*-Codes sammeln, anzeigen und bei Bedarf notieren.

In diesem Zusammenhang hat der *AF*-Taster eine Zusatzfunktion. Wird der *AF*-Taster für mind. 2 Sekunden gedrückt, wird die Dauer der Anzeige von 5 Sekunden auf 1 Sekunde reduziert. Die Dauer der Anzeige wechselt wieder auf 5 Sekunden, wenn der UKW-Tuner auf einen anderen Sender mit RDS-Empfang abgestimmt wird.

Fehlen RDS-Daten oder wird auf "Rauschen" abgestimmt, wechselt die Anzeige nach 10 Sekunden und es werden die gesammelten Daten wie folgt angezeigt:

1. Zeile

Diese bleibt unverändert und entspricht der Darstellung der Version "A".

2 Zeile

Im oberen Bild mit der noch leeren 2. Zeile werden mit der letzten Änderung die beiden zuletzt empfangenen Sendernamen (*PS*) mit je 8 Zeichen nebeneinander eingeblendet. Dies ist für Funkamateur-DX zur Identifikation der Stationen über einen längeren Zeitraum sehr hilfreich (Einstellung des UKW-Tuners auf eine Festfrequenz bei Überreichweitenaktivität z.B. über die Nacht). Am nächsten Tag können dann die verschiedenen Stationen auf dieser einen Frequenz abgelesen werden. Pro Sender genügen 4 Telegramme für die 4 x 2 Zeichen des *PS*.

3. Zeile

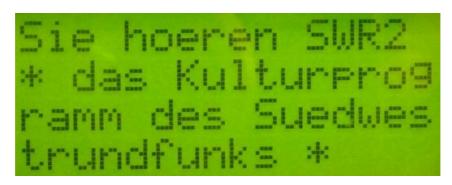
Hier wird ein Stationszähler (siehe Bild oben Position E) mit der maximalen Anzahl (MAX:) aller empfangenen RDS-Stationen (seit dem Einschalten des RDS-Decoders) eingeblendet, der bei einem Band-Scan jede einzelne RDS-Station - auch mehrfach vorhandene (doppelte *PI*-Codes) - mitzählt. Es darf jedoch nur in eine Richtung abgestimmt werden, da sonst in Gegenrichtung die bereits gezählten Stationen noch einmal erfasst werden. Eine Verfälschung kann zudem auftreten, befinden sich zwei gleiche *PI*-Codes (zwei gleiche Empfangsstationen) direkt nebeneinander. Dann wird nur ein *PI*-Code gezählt. Der Stationszähler wird mit jedem Einschalten des Decoders auf "0" gesetzt und ist damit zählbereit. Wird der *AF*-Taster 2 Sekunden lang betätigt, erfolgt ebenfalls die Rücksetzung des Stationszählers auf "0". Die *AF*-LED beginnt dabei zu leuchten und kann mit einer weiteren Tasterbetätigung wieder abgeschaltet werden. Das ist z.B. sinnvoll, wenn man mit der Abstimmung am linken oder rechten Ende des UKW-Bereichs angelangt ist.

Rechts im Fenster (siehe Bild oben Position F) wird stets der vorletzte *PI*-Code (LPI:) angezeigt. Wird eine neue Station empfangen (rechts in der 4. Zeile sichtbar), rückt der zuvor empfangene *PI*-Code , hier "D5A2", nach oben in die 3. Zeile, in die Position F an die Stelle von "D301".

4. Zeile

Links in der 4. Zeile erscheint ein beliebiger *PI*-Code aus der Liste der bisher empfangenen *PI*-Codes. Der Durchlauf der Liste wurde angehalten. In der Mitte, hier im Bild "(9)", erscheint die Anzahl der empfangenen (unterschiedlichen) *PI*-Codes. Der Punkt (siehe Bild oben Position G) erscheint, wenn aktuell keine RDS-Datengruppen empfangen werden. Ist der Punkt nicht mehr sichtbar, werden RDS-Datengruppen vollständig empfangen. Die Funktion ist mit der QUAL-Anzeige vergleichbar, allerdings mit einer reduzierten Auflösung. Rechts wird der letzte *PI*-Code, der vor dem Verstimmen des UKW-Tuners empfangen wurde, angezeigt.

Diese DX-Version entstand in Zusammenarbeit mit dem Wellenforum. Mein besonderer Dank gilt daher der hilfreichen Unterstützung des Wellenforums!


Sonderversion E (Radiotext RT)

Nach dem Einschalten und Abstimmen auf eine UKW-Station erscheint zunächst das Abbild der Grundversion "A" auf dem Display. Nach ca. 20 Sekunden schaltet die Anzeige komplett auf eine 4-zeilige Radiotextanzeige um. Damit werden sämtliche Zeilen des Displays für die Anzeige des Radiotextes genutzt. Folgen fehlerhafte RDS-Datenblöcke, wird das Display wieder versuchen das Abbild der Version "A" anzuzeigen. Wird auf eine neue UKW-Station mit relativ fehlerfreien RDS-Daten abgestimmt, schaltet die Anzeige zunächst stets in den Modus der Version "A" zurück, um erneut nach ca. 20 Sekunden auf die vierzeilige Radiotextanzeige zu wechseln. Befindet sich im Empfangsbereich ein Rundfunksender ausreichender Feldstärke mit der Anzeige "Lok." in der 4. Zeile (die vier letzten Zeichen der Zeile werden hierfür verwendet), kann mit dem optionalen AF-Taster - dieser ist hierbei 2 Sekunden lang zu betätigen - die vierzeilige Radiotextanzeigefunktion aktiviert bzw. deaktiviert werden. Sichtbar ist die PI-Kennung "Lok." nur im Modus der Version "A", welches durch ein kurzzeitiges Verstimmen auf eine andere Station erzwungen werden kann.

Nach jedem Spannungsverlust bzw. Abschalten des Decoders wird die Programmierung zurückgesetzt. Das bedeutet, der Decoder befindet sich beim Einschalten stets im Ausgangszustand der Version "E". Somit wird der Radiotext erneut nach ca. 20 Sekunden über die vier Zeilen des Displays angezeigt. Lokale Rundfunkstationen strah-

len ihr Programm nicht über Alternativfrequenzen ab, da sie nur lokal auf einer einzigen Frequenz senden. Aus diesem Grund kann hier die *AF*-Tasterfunktion zur Umschaltung genutzt werden.

Der in der Hardware verwendete Controller hat, was den IC-eigenen Programmspeicher angeht, mit der Sonderversion "E" seine Grenze erreicht. Sichtbar wird dies durch ein mögliches Fehlen der Anzeige der Uhrzeit, wenn stets zur vollen Minute bereits auf den vierzeiligen Modus Radiotext umgeschaltet wurde. Sobald jedoch die Abstimmung auf einen anderen UKW-Sender innerhalb 2 bis 15 Sekunden vor dem Minutenwechsel erfolgt ist, wird die Uhrzeit dauerhaft angezeigt und auch nur dann der Minutenimpuls an der Anschlussleiste X3 Pin 4 ausgegeben. Eine Korrektur ist aus dem oben genannten Grund daher nicht mehr möglich. Die Erfahrung zeigt, dass bei einem gewöhnlichen Abstimmen von Sender zu Sender in der Regel die Uhrzeit einmal "eingefangen" wird. Allerdings sollte bei dieser Version der Minutenimpuls (an X3 Pin 4) nicht zu Synchronisationszwecken verwendet werden. Weitere Informationen zu den einzelnen Software-Versionen sind auf den entsprechenden Internetseiten zu finden.

Unterschiede zu den Vorgängern RDS-Decoder 2 & 3

- Mit der Überarbeitung des RDS-Decoders wurden einige Änderungen am Modul vorgenommen. Der *RDS-Decoder 3* besitzt nun z.B. ein zusätzliches 57kHz Bandfilter (ca. -20dB bei 30 bis 100kHz) um unerwünschte Signale zu bedämpfen.
- Verwendet wird ein neuer Decoder-Chip, der SAA6579T in SMD-Ausführung. Die Beschaltung wurde dem neuen IC entsprechend angepaßt.
- Auf der Bestückungsseite wurde eine Lötfläche zur optionalen Bestückung einer Gehäuseabschirmung (Weißblech) mit den Maßen 55mm x 37mm vorgesehen. Sollte dies nachträglich geschehen, ist der Elko C1 vorher zu entfernen und anschließend wieder einzulöten.
- Die Anschlussstiftleiste verlängert sich von 8 auf 10 Pins. Damit wurde der RDS-Decoder 3 mechanisch auf die RDS-Alarmfunktion vorbereitet, die leider nicht mehr implementiert wird. Die beiden Programmtypen "Alarm" und "Testalarm" erscheinen bei Aussendung durch eine Rundfunkstation wie jeder andere Programmtyp auf dem Display. Gedacht war bei einer späteren Bereitstellung der entsprechenden Software mittels der beiden Programmtypen über den Pin 9 z.B. einen Transistor anzusteuern, um über ein Relais einen Warnton zu auszulösen. Somit wäre der RDS-Decoder geeignet - ähnlich eines Brandmelders im Wohnraum - im Notfall mittels Warnton auf eine Gefahrensituation hinzuweisen. Dies sollte den Nutzer des Gerätes veranlassen, Meldungen in den Rundfunkprogrammen zu verfolgen (Vorgabe von Verhaltensregeln).
- Im direkten Vergleich setzt die Decodierung des *RDS-Decoder* 3 einen "Kick" früher bei schwächeren Signalpegeln ein.
- Die Kontrasteinstellung des Displays ist beim *RDS-Decoder 4* ohne "Spezialwerkzeug" durch ein größeres Poti einfacher möglich.
- Im RDS-Decoder 4 wurden durch ein verbessertes Abblocken Störungen auf der Platine reduziert.
- Der RDS-Dateneingang erfolgt nun lötfrei über eine stehend montierte Cinch-Steckbuchse.
- Ergänzt wurde eine SMD-PWR-LED zur Visualisierung der internen 5V Versorgung.
- Die PC-Ausgänge RDCL und RDDA sind nun sicherer gegen Kurzschluß nach GND.

Anschlussmöglichkeiten

Das Decodermodul besitzt in der neuen Version 4 eine Cinch-Steckbuchse. Die zweipolige Klemme (X4) dient der Versorgung mit z.B. 6V DC. Eine 10-polige Klemme (X3) bietet z.B. die Möglichkeit des Anschlusses eines PC mittels RS232 oder der Sound-Karte, abhänging von der verwendeten Software. Hierzu sei darauf hingewiesen, dass bei einer Nutzung des Decoders am PC das LCD-Display nicht zwingend aufgesteckt bzw. angeschlossen sein muss. Der RDS-Decoder ist ohne Display funktionstüchtig!

Der Minutenimpuls mit einer Länge von 0,6ms (für 0,6ms von GND auf +5V-Pegel) kann an Pin 3 und 4 (GND) abgegriffen und zu Synchronisationszwecken verwendet werden.

Ein externer Taster (Schließer) zur Alternativfrequenzsuche kann optional an Pin 5 und 6 angeschlossen werden. Alternativ besteht die Möglichkeit direkt auf der Platine einen einpoligen *AF*-Taster (S3) und eine *AF*-LED (V4) einzulöten (nicht im Lieferumfang). Der *AF*-Taster kann damit frontseitig bedient werden.

Über Pin 7 und 8 erfolgt die Umschaltung FM/AM. Im Auslieferungszustand ist jedoch der Widerstand R13 bestückt (FM dauerhaft ON). **Eine Nutzung der FM/AM-Umschaltung ist nur möglich, wenn der Widerstand R13 entfernt wird!** Hierbei ist zu beachten, dass der Strom, der über einen optionalen externen Schalter oder ein optionales Relais fließt, ca. 300mA (mit Displaybeleuchtung) betragen kann. Der Anschlussplan des RDS-Decoders gibt einen Überblick im Detail. Die Dokumentation zum *RDS-Decoder 4* ist unter der Rubrik "*Downloads*" abgelegt.

Information zu den verwendeten Displays

Für den RDS-Decoder werden Displays unterschiedlicher Hersteller verwendet, die für Endverbraucher verfügbar sind. Umfassend dokumentierte Datenblätter zu den Displays sind von einigen Herstellern überhaupt nicht oder nur in Auszügen verfügbar. Ein Nebeneffekt davon ist, dass diese nicht immer zu 100% kompatibel zum Controller des Hitachi-Standards HD44780 verhalten. Zudem verhält sich der Zeichensatz der EU-Norm EN50067 zur RDS-Datenübertragung bei den Sonderzeichen (außerhalb des Standardzeichenbereiches der ISO-Norm 646) abweichend zu den Standards der Displayhersteller. Es kann daher zu einzelnen Abweichungen in der Zeichendarstellung kommen.

Beschränken sich Rundfunkstationen auf den lateinischen Standardzeichensatz (ISO-Norm 646), dann werden bei den meisten HD4470-kompatiblen Displays die Zeichen fehlerfrei dargestellt. Der *RDS-Decoder 4* ist <u>nur</u> für den Standardzeichensatz (ISO-Norm 646) konzipiert. Das bedeutet, außerhalb des Standardzeichensatzes gibt es Abweichungen, die dann natürlich auf dem Display als "chinesische" oder Leerzeichen zu sehen sind. Dies ist insbesondere beim Radiotext der Fall.

In der Praxis halten sich die fehlerhaften Zeichen jedoch in akzeptablen Grenzen. Eine Anpassung bzw. Korrektur des erweiterten Zeichensatzes durch den RDS-Decoder an diverse Zeichensätze verschiedener Displaycontroller ist nicht mehr geplant.

Technische Daten

Spannungsversorgung: 6V DC (mit Anpassung der Widerstände R1 und R2 bis 12V DC möglich)

Stromaufnahme: max. 250mA mit Displayhintergrundbeleuchtung bei 6V DC (grünes Display)

ca. 30mA ohne Beleuchtung (Abweichungen je nach Ausführung möglich)

max. 80mA mit blau-weißen Display bei 6V DC

Modulabmessungen: B=96mm, H=60mm, T=ca. 40mm (abhänig vom verwendeten Display)

Betriebstemperaturbereich: +10...+40°C

Gewicht: max. 120g (abhängig vom verwendeten Display)

Technische Änderungen vorbehalten.

Weitere Informationen finden Sie unter: http://haraldkliem.jimdo.com

Darstellung der Programmtypen (PTY)

Nummer	Programmtyp	Anzeige RDS-Decoder 4x16 Zeichen	Anzeige RDS-Decoder 2x16 Zeichen
1	Nachrichten	Nachrichten	News
2	Politik & Zeitgeschehen	Zeitgeschehen	Politik
3	Spezielle Wortprogramme	Information	Info
4	Sport	Sport	Sport
5	Lernen & Weiterbildung	Lernen & Bildung	Bildung
6	Hörspiel & Literatur	Hoersp.&Literat.	Liter.
7	Kultur, Kirche, Gesellsch.	Kultur & Gesell.	Kultur
8	Wissenschaft	Wissenschaft	Wissen
9	Unterhaltendes Wort	Unterhaltung	Unterh.
10	Popmusik	Popmusik	Рор
11	Rockmusik	Rockmusik	Rock
12	Unterhaltungsmusik	UnterhaltMusik	U-Musik
13	Leichte klassische Musik	Leichte Klassik	Leichte
14	Ernste klassische Musik	Ernste Klassik	Ernste
15	Spezielle Musikprogramme	Musik-Special	Special
16	Wetter	Wetterbericht	Wetter
17	Finanzen	Wirtschaft	Wirtsch
18	Kinderprogramm	Kinderprogramm	Kinder
19	Gesellschaftliches	Gesellschaft	Gesell.
20	Religion	Religion	Relig.
21	Telefonieren	Anrufsendung	Anruf
22	Reisen	Reiseinformation	Reise
23	Freizeit	Freizeit	Freiz.
24	Jazz Musik	Jazz Musik	Jazz
25	Country Musik	Country Musik	Country
26	Nationale Musik	Nationale Musik	Musik
27	Oldies	Oldies	Oldies
29	Dokumentation	Dokumentation	Doku.
30	Testalarm**	Testalarm**	Test**
31	Alarm !**	ALARM !**	ALARM!**
-	Bei Verkehrsinformationen	Verkehrsinfo	Verkehr

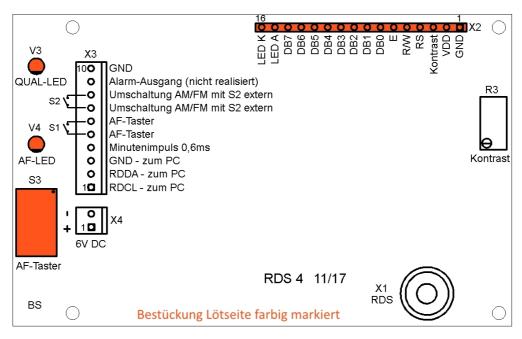
Das Display mit 2x16 Zeichen zeigt beim Fehlen des Programmtyps (die Rundfunkstation übermittelt keine RDS-Daten zum Programmtyp) den Radiotext (RT) automatisch über die gesamte Länge von 16 Zeichen an. Wird ebenso der Radiotext nicht vom Sender übermittelt, erfolgt an dieser Stelle keine Anzeige.

Auf dem Display mit 2x16 Zeichen erfolgt die Anzeige des Programmtyps in der 2. Zeile, im Display 4x16 Zeichen in der 3. Zeile.

Die Hardware des RDS-Decoders ist für die Funktion vorbereitet. Die Software besitzt die Funktion, einen Schaltimpuls zur Ansteuerung einer Warnanlage auszugeben, noch nicht.

Sendebereich im PI-Code

Bedeutung in Deutschland	Anzeige RDS-Decoder
Lokalsender (meist nur eine Sendestation)	Lok.
Empfang auf dem gesamten Staatsgebiet möglich	Nat.
Empfang im gesamten Bundesland möglich	Land
Empfang nur in einem Teil eines Bundeslandes möglich	Reg.


In den Versionen "C" und "D" für Funkamateure wird anstelle des Stationsidentifikationscodes (ebenso Teil des PI-Codes) im Hex-Format die Darstellung des Sendebereiches (siehe Tabelle oben) im Display 4x16 Zeichen rechts in der 4. Zeile (die vier letzten Zeichen) angezeigt.

Die Anzeige der Landeskenner ist im Moment nicht vorgesehen.

In den europäischen Nachbarländern können bei der Darstellung Abweichungen auftreten.

Gültig für alle RDS-Decoder, die ab dem 01.01.2013 ausgeliefert wurden.

Anschlussplan

Technische Änderungen vorbehalten!